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A fast solver for the orthogonal spline collocation solution
of the biharmonic Dirichlet problem on rectangles
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Abstract

A fast Schur complement algorithm is presented for computing the piecewise Hermite bicubic orthogonal spline

collocation solution of the biharmonic Dirichlet problem on a rectangular region. On an N � N uniform partition, the

algorithm, which involves the preconditioned conjugate gradient method and fast Fourier transforms, requires

OðN 2 log2 NÞ arithmetic operations.
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1. Introduction

This paper is concerned with the solution of the biharmonic Dirichlet problem

D2u ¼ f in X; u ¼ g1 on oX; ou=on ¼ g2 on oX; ð1:1Þ

where D denotes the Laplacian, X ¼ ða; bÞ � ðc; dÞ, oX is the boundary of X, and o=on is the outward

normal derivative on oX. Problem (1.1) models bending of a thin elastic rectangular plate, equilibrium of an
elastic rectangle, and flow of a viscous fluid in a rectangular cavity (see, e.g., [14]). It can be solved nu-

merically using one of two approaches: direct or mixed. In the first approach, (1.1) is discretized directly

using, for example, the finite difference or finite element Galerkin method. In the mixed approach [6], (1.1)

is first replaced by a coupled system of two second order differential equations in u and Du. This system is

then discretized using, again, the finite difference or finite element Galerkin method. One advantage of the
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mixed approach is that it produces an approximation not only to u but also to Du. This is of significant
importance in, for example, fluid dynamics, where Du represents vorticity.

In this paper, we solve (1.1) using the mixed piecewise Hermite bicubic orthogonal spline collocation

(OSC) method. Therefore, as in [13,17], we set v ¼ Du, introduce a uniform N � N partition of X, and
discretize the coupled system of two second order differential equations in u and v using OSC with piecewise

Hermite bicubics. The resulting OSC linear system has 4N 2 unknowns corresponding to the OSC ap-

proximation of u and 4N 2 unknowns corresponding to the OSC approximation of v. This system was solved

in [17] at a cost (the number of arithmetic operations) OðN 3 log2 NÞ using a Schur complement method. A
capacitance matrix method of [13] has a cost OðN 3Þ. The purpose of this paper is to develop an algorithm of

complexity OðN 2 log2 NÞ with a relatively small proportionality constant multiplying N 2 log2 N . To this end,

employing a Schur complement approach, we reduce the OSC linear system to a Schur complement system

involving unknowns corresponding to the OSC approximation of v on the two vertical sides of oX and to an

auxiliary OSC linear system for a biharmonic problem with v, instead of ou=on, specified on the two vertical

sides of oX. Multiplication of the Schur complement system by an appropriate matrix gives rise to the linear

system with a symmetric and positive definite matrix. This new Schur complement system is solved by the

preconditioned conjugate gradient (PCG) method with a preconditioner obtained from the auxiliary OSC
linear system. Numerical tests indicate that the preconditioner is spectrally equivalent to the Schur com-

plement matrix. Multiplication of a vector by the Schur complement matrix is reduced to computing 8N
inner products in the space R2N and hence its cost is 32N 2. The cost of solving a linear system with the

preconditioner is OðN log2 NÞ. Therefore, with the number of PCG iterations equal to m, the cost of solving
the Schur complement system is 32mN 2. The 4N 2 unknowns corresponding to the OSC approximation of u
are obtained, at a cost 20N 2 log2 N , by solving the auxiliary OSC linear system using separation of variables

and fast Fourier transforms. Hence, the nearly optimal total cost of the algorithm to compute the OSC

approximation to u is 20N 2 log2 N þ 32mN 2. (The additional cost of computing the 4N 2 unknowns corre-
sponding to the OSC approximation of v is 10N 2 log2 N .) It is worth noting that the term 20N 2 log2 N is also

the cost of the FFT algorithm of [3] for solving the linear system arising from the piecewise Hermite bicubic

OSC discretization of Poisson�s equation.
An approach similar to the one presented in this paper was used in [4] to compute the Legendre spectral

collocation solution of (1.1). However, with polynomials of degree 6N used in both the x- and y-directions,
the cost of the corresponding algorithm of [4] is OðN 3Þ. Moreover, in comparison to the present paper, [4]

involves the numerical solution of a symmetric eigenvalue problem, a different approach for multiplying a

vector by the Schur complement matrix, a special selection of two bases functions to make the precondi-
tioner spectrally equivalent to the Schur complement matrix, and the more expensive solution with the

preconditioner.

As expected, numerical results of this paper indicate that the mixed piecewise Hermite bicubic OSC

discretization of (1.1) produces fourth order approximations to u in the maximum norm. Moreover, the

observed convergence rates are four for the nodal approximations to ux and uy . This higher than expected

accuracy for the first order derivatives at the partition nodes demonstrates superconvergence phenomena of

OSC.

There is an extensive literature on solving (1.1) using the direct or mixed approach with different types of
discretizations. Here we mention three additional references on fourth and higher order methods. Reference

[1] is concerned with a fourth order direct finite difference method in which a 9-point stencil is used to

discretize (1.1) in terms of approximations to u, ux, and uy at the partition nodes. A direct finite element

method, based on the standard weak form of (1.1), with piecewise Hermite bicubics is considered in [21]. A

mixed finite element method with continuous piecewise polynomials is discussed in [10]. In [1,10,21], and in

many other papers on finite difference and finite element Galerkin discretizations of (1.1), the resulting

linear systems are often solved by iterative methods with multigrid or multilevel (multiplicative or additive)

preconditioners. The costs of such iterative multigrid and multilevel multiplicative methods are
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OðN 2j log2 ejÞ, where 0 < e < 1 is the factor by which the error in the initial guess is to be reduced. Since, in

general, e has to be proportion to N�k, with k depending on the order of discretization, the costs of these

methods are OðN 2 log2 NÞ. Typically, the proportionality constant multiplying N 2 log2 N is not given ex-

plicitly (see, for example, [1,10,21]). This constant depends on, among other things, the number of

smoothings in V - or W -cycle multigrid preconditioners. It is shown in [10] that, in some cases, the number

of smoothings must be at least 8 in order to guarantee convergence of the corresponding iterative multigrid

method. For these reasons, the proportionality constant multiplying N 2 log2 N in many fourth order finite

difference and finite element Galerkin methods is expected to be at least as large as a similar constant in the
algorithm of this paper. Also, in comparison to iterative multigrid and multilevel multiplicative methods,

which are inherently sequential, the present algorithm is well suited for parallel implementation since it

consists of independent solutions of linear systems, matrix–vector multiplications, and inner product

evaluations.

Our approach of solving numerically (1.1), which is based on finding first an approximation to Du on the

vertical sides of oX, is particularly well suited for solving plate bending problems [18] with different kinds of

clamped and simply supported boundary conditions. For some of these problems our algorithm becomes

direct since its PCG component is unnecessary. This is not the case for the iterative multigrid and multilevel
methods of [1,10,21].

An outline of this paper is as follows. OSC concepts and necessary results are introduced in Section 2.

The OSC biharmonic Dirichlet problem and its matrix–vector form are given in Section 3. The efficient

algorithm for solving the OSC linear system is discussed in Section 4. In Section 5 we present numerical

results for test problems similar/identical to those in [1,4,11,12,20]. We concentrate, in particular, on the

application of our method to the solution of plate bending and fluid flow problems.
2. Preliminaries

For the sake of simplicity, we assume in Sections 2–4 that X ¼ ð0; 1Þ � ð0; 1Þ and that N is a power of 2.

Let ftngNn¼0 be a uniform partition of ½0; 1� such that tn ¼ nh, n ¼ 0; . . . ;N , where h ¼ 1=N . Let Mh be the

space of piecewise Hermite cubics on ½0; 1� defined by

Mh ¼ fw 2 C1½0; 1� : wj½tn;tnþ1� 2 P3; n ¼ 0; . . . ;N � 1g;

where P3 denotes the set of polynomials of degree 6 3, and let

M0
h ¼ fw 2 Mh : wð0Þ ¼ wð1Þ ¼ 0g; M00

h ¼ fw 2 M0
h : w

0ð0Þ ¼ w0ð1Þ ¼ 0g:

Let fnig2Ni¼1 be the Gauss points in ð0; 1Þ given by

n2nþ1 ¼ tn þ h
3�

ffiffiffi
3

p

6
; n2nþ2 ¼ tn þ h

3þ
ffiffiffi
3

p

6
; n ¼ 0; . . . ;N � 1:

For n ¼ 0; . . . ;N , let vn, sn 2 Mh, associated with tn, be defined by

vnðtmÞ ¼ dn;m; v0nðtmÞ ¼ 0;
snðtmÞ ¼ 0; s0nðtmÞ ¼ h�1dn;m;

n;m ¼ 0; . . . ;N ; ð2:1Þ

where dn;m is the Kronecker delta. Then fwkg
2Nþ1
k¼0 , such that

fw0;w1;w2;w3; . . . ;w2N�2;w2N�1;w2N ;w2Nþ1g ¼ fv0; s0; v1; s1; . . . ; vN�1; sN�1; sN ; vNg; ð2:2Þ

is a basis for Mh. Likewise, fwkg
2N
k¼1 and fwkg

2N�1

k¼2 are bases for M0
h and M00

h , respectively.
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We introduce 2N � 2N matrices

A ¼ ðai;kÞ2Ni;k¼1; ai;k ¼ �w00
kðniÞ; B ¼ ðbi;kÞ2Ni;k¼1; bi;k ¼ wkðniÞ: ð2:3Þ

The matrices A and B have the almost block diagonal (ABD) structure [5]

A;B ¼

� � �
� � �

� � � �
� � � �

� � � �
� � � �

. .
. . .

. . .
.

� � � �
� � � �

� � �
� � �

2
6666666666666666664

3
7777777777777777775

; ð2:4Þ

where � denotes a nonzero entry.

In addition to A and B of (2.3), we introduce matrices

At ¼ ðai;0; ai;2Nþ1Þ2Ni¼1; Bt ¼ ðbi;0; bi;2Nþ1Þ2Ni¼1; ð2:5Þ
Ar ¼ ðaj;lÞ2N ;2N�1

j¼1;l¼2 ; Br ¼ ðbj;lÞ2N ;2N�1

j¼1;l¼2 ; ð2:6Þ
Ae ¼ ðaj;lÞ2N ;2Nþ1

j¼1;l¼0 ; Be ¼ ðbj;lÞ2N ;2Nþ1

j¼1;l¼0 ; ð2:7Þ

where ai;k, bi;k, aj;l, and bj;l are defined as in (2.3). The 2N � 2 matrices At and Bt of (2.5) have the

structure

At;Bt ¼

� 0

� 0

0 0

..

. ..
.

0 0
0 �
0 �

2
666666664

3
777777775
: ð2:8Þ

The following remarks follow easily from (2.3)–(2.8).

Remark 2.1. The matrix Ar (Br) is obtained by deleting the first and last columns from A (B), respectively.
The matrix Ae (Be) is obtained by appending the first and second columns of At (Bt) to the left- and right-

hand sides of A (B), respectively.
Remark 2.2. The cost of multiplying a vector by BT (or Br, BT
r , Ar, AT

r ) is OðNÞ.
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Eqs. (2.4) and (2.8) imply that BTAt and BTBt have the structures

BTAt ¼

a1 0
a2 0

a3 0

0 0

..

. ..
.

0 0

0 a2N�2

0 a2N�1

0 a2N

2
6666666666664

3
7777777777775
; BTBt ¼

b1 0
b2 0

b3 0

0 0

..

. ..
.

0 0

0 b2N�2

0 b2N�1

0 b2N

2
6666666666664

3
7777777777775
: ð2:9Þ

Using the explicit formulas for the entries of B, At, and Bt, it is easy to show that

a2N�2 ¼ a2; a2N�1 ¼ �a3; a2N ¼ �a1; b2N�2 ¼ b2; b2N�1 ¼ �b3; b2N ¼ �b1: ð2:10Þ

In [3], explicit formulas were derived for two real matrices: W ¼ ðwi;kÞ2Ni;k¼1 and

K ¼ diagðk1; . . . ; k2NÞ; kk > 0; k ¼ 1; . . . ; 2N ; ð2:11Þ

such that

W TBTAW ¼ K; W TBTBW ¼ I2N ; ð2:12Þ

where Ik is the k � k identity matrix. Since only a different ordering of the same standard basis functions for

M0
h was used in [3], the matrix W of this paper and the matrix Z of [3, (2.31)] are the same except for the

ordering of the rows. In fact, the ð2iÞth row of W is equal to the ith row of Z, i ¼ 1; . . . ;N � 1, the ð2i� 1Þth
row of W is equal to the ðN � 1þ iÞth row of Z, i ¼ 1; . . . ;N , and the ð2NÞth rows of W and Z are identical.

It also follows from [3, (2.31)] that for l ¼ 1; . . . ;N ,

w2N�2;2l ¼ �w2;2l; w2N�2;2l�1 ¼ w2;2l�1; ð2:13Þ
w2N�1;2l ¼ w3;2l; w2N�1;2l�1 ¼ �w3;2l�1; ð2:14Þ
w2N ;2l ¼ w1;2l; w2N ;2l�1 ¼ �w1;2l�1; ð2:15Þ

and that a vector can be multiplied by W (or W T) using one fast sine transform applied to a vector with

N � 1 components and one fast cosine transform applied to a vector with N þ 1 components. Using the

results of [19, Sections 4.4.5 and 4.4.6], we obtain the following remark.

Remark 2.3. The cost of multiplying a vector by the matrix W (or W T) is 5N log2 N .

It follows from (2.11) that Kþ kkI2N , k ¼ 1; . . . ; 2N , is nonsingular, and hence using (2.12) it easy to

verify that

ðAþ kkBÞ�1 ¼ W ðKþ kkI2N Þ�1W TBT; k ¼ 1; . . . ; 2N : ð2:16Þ
The following result will be needed later.

Lemma 2.1. If U 2 M0
h �M00

h and V 2 Mh �Mh, then

h
2

X2N
i;j¼1

ðDUV Þðni; njÞ ¼
h
2

X2N
i;j¼1

ðUDV Þðni; njÞ þ
X2N
j¼1

ðUxV Þð�; njÞj10:
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Proof. Using [9, Lemma 3.1], we have

h
2

X2N
i¼1

ðw00zÞðniÞ ¼
h
2

X2N
i¼1

ðwz00ÞðniÞ þ ðw0zÞj10 � ðwz0Þj10; w; z 2 Mh: ð2:17Þ

Hence, (2.17) and Uða; yÞ ¼ 0, a ¼ 0; 1, y 2 ½0; 1�, give

h
2

X2N
i¼1

ðUxxV Þðni; njÞ ¼
h
2

X2N
i¼1

ðUVxxÞðni; njÞ þ ðUxV Þð�; njÞj10; j ¼ 1; . . . ; 2N :

Likewise, (2.17) and Uðx; bÞ ¼ Uyðx; bÞ ¼ 0, x 2 ½0; 1�, b ¼ 0; 1, give

h
2

X2N
j¼1

ðUyyV Þðni; njÞ ¼
h
2

X2N
j¼1

ðUVyyÞðni; njÞ; i ¼ 1; . . . ; 2N :

Hence the desired result follows from the last two equations. �
3. OSC biharmonic Dirichlet problem and its matrix–vector form

Since the discretization of the nonzero boundary conditions in (1.1) was treated in great detail in [13], we

assume, in what follows, that g1 ¼ g2 ¼ 0. Introducing v ¼ Du, we replace (1.1) with the coupled problem

�Duþ v ¼ 0 in X; �Dv ¼ �f in X; u ¼ ou=on ¼ 0 on oX: ð3:1Þ

The piecewise Hermite bicubic OSC problem for (3.1) involves finding U 2 M00
h �M00

h and V 2 Mh �Mh

such that

�DUðni; njÞ þ V ðni; njÞ ¼ 0; �DV ðni; njÞ ¼ �f ðni; njÞ; i; j ¼ 1; . . . ; 2N ; ð3:2Þ
V ða; bÞ ¼ Vyða; bÞ ¼ 0; a; b ¼ 0; 1: ð3:3Þ

The scheme (3.2), (3.3), without its analysis, was first considered in [17]. In [13], the existence and

uniqueness of U and V were proved in Theorem 5.1 and error bounds for ku� UkHkðXÞ, k ¼ 1; 2, were
derived in Theorem 5.2.

Setting

u1;l ¼ u2N ;l ¼ 0; l ¼ 2; . . . ; 2N � 1; ð3:4Þ

and using the basis functions fwkg
2Nþ1

k¼1 of (2.2), we can write

Uðx; yÞ ¼
X2N
k¼1

X2N�1

l¼2

uk;lwkðxÞwlðyÞ: ð3:5Þ

In a similar way, using (3.3), we have

V ðx; yÞ ¼
X2N
k¼1

X2Nþ1

l¼0

vk;lwkðxÞwlðyÞ þ
X

k¼0;2Nþ1

X2N�1

l¼2

vk;lwkðxÞwlðyÞ: ð3:6Þ

Corresponding to (3.5) and (3.6), we introduce vectors

u ¼ ½u1;2; . . . ; u1;2N�1; . . . ; u2N ;2; . . . ; u2N ;2N�1�T; ð3:7Þ
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u1;� ¼ ½u1;2; . . . ; u1;2N�1�T; u2N ;� ¼ ½u2N ;2; . . . ; u2N ;2N�1�T; ð3:8Þ
v ¼ ½v1;0; . . . ; v1;2Nþ1; . . . ; v2N ;0; . . . ; v2N ;2Nþ1�T; ð3:9Þ
v0;� ¼ ½v0;2; . . . ; v0;2N�1�T; v2Nþ1;� ¼ ½v2Nþ1;2; . . . ; v2Nþ1;2N�1�T: ð3:10Þ

Clearly, u1;� and u2N ;� of (3.8) are respectively the first and last subvectors of u in (3.7).

Substituting (3.5) and (3.6) into (3.2), and using (2.3), (2.5)–(2.7), (3.4), we obtain the OSC linear system

ðA� Br þ B� ArÞuþ ðB� BeÞvþ ðBt � BrÞ
v0;�

v2Nþ1;�

� �
¼ 0; ð3:11Þ
ðA� Be þ B� AeÞvþ ðAt � Br þ Bt � ArÞ
v0;�

v2Nþ1;�

� �
¼ f; ð3:12Þ
�u1;� ¼ u2N ;� ¼ 0; ð3:13Þ

where

f ¼ ½f1;1; . . . ; f1;2N ; . . . ; f2N ;1; . . . ; f2N ;2N �T; ð3:14Þ

and fi;j ¼ �f ðni; njÞ.
4. Algorithm for solving OSC linear system

In this section, we describe an efficient algorithm for solving (3.11)–(3.13).

4.1. Description of the algorithm

Eqs. (3.11)–(3.13) can be written in the compact form

S11
u

v

� �
þ S12

v0;�
v2Nþ1;�

� �
¼ 0

f

� �
; ð4:1Þ
S21
u

v

� �
¼ 0; ð4:2Þ

where

S11 ¼
A� Br þ B� Ar B� Be

O A� Be þ B� Ae

� �
; ð4:3Þ
S12 ¼
Bt � Br

At � Br þ Bt � Ar

� �
; ð4:4Þ
S21 ¼
�I2N�2 O O O

O O I2N�2 O

� �
: ð4:5Þ

On comparing (3.13) with (4.2) and (4.5), we obtain the following remark.
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Remark 4.1. The computation of S21
u
v

� �
amounts to extracting �u1;� and u2N ;� from u.

The matrix S11 of (4.3) is nonsingular since

ðA� Br þ B� ArÞuþ ðB� BeÞv ¼ 0; ðA� Be þ B� AeÞv ¼ 0;

is the matrix–vector form of the following auxiliary OSC problem: find U 2 M0
h �M00

h , V 2 M0
h �Mh,

such that

�DUðni; njÞ þ V ðni; njÞ ¼ 0; �DV ðni; njÞ ¼ 0; i; j ¼ 1; . . . ; 2N :

It follows from [13, Theorem 4.1] that the only solution to this problem is U ¼ V ¼ 0 which gives
u ¼ v ¼ 0.

Using the nonsingularity of S11, we eliminate
u

v

� �
from (4.1) and (4.2) to obtain

S
v0;�

v2Nþ1;�

� �
¼ �S21S�1

11

0

f

� �
; ð4:6Þ

where the ð4N � 4Þ � ð4N � 4Þ Schur complement matrix S is

S ¼ �S21S�1
11 S12: ð4:7Þ

The matrix S is nonsingular since it is the Schur complement of the nonsingular S11 in the nonsingular
S11 S12
S21 O

� �
. Although the matrix S is nonsymmetric, we have the following key result.

Theorem 4.1. The matrix

ŜS ¼ ðI2 � BT
r BrÞS ð4:8Þ

is symmetric and positive definite.

Proof. It follows from the second equation in (2.12) and Remark 2.1 that Br has linearly independent

columns and hence BT
r Br is nonsingular. Therefore ŜS is nonsingular since it is the product of two nonsin-

gular matrices.

By (4.8) and (4.7), symmetry of ŜS is equivalent to

� ðI2

 
� BT

r BrÞS21S�1
11 S12

v
ð1Þ
0;�

v
ð1Þ
2Nþ1;�

" #
;

v
ð2Þ
0;�

v
ð2Þ
2Nþ1;�

" #!
R4N�4

¼ � ðI2

 
� BT

r BrÞS21S�1
11 S12

v
ð2Þ
0;�

v
ð2Þ
2Nþ1;�

" #
;

v
ð1Þ
0;�

v
ð1Þ
2Nþ1;�

" #!
R4N�4

ð4:9Þ

for any

v
ðnÞ
0;� ¼ vðnÞ0;2; . . . ; v

ðnÞ
0;2N�1

h iT
; v

ðnÞ
2Nþ1;� ¼ vðnÞ2Nþ1;2; . . . ; v

ðnÞ
2Nþ1;2N�1

h iT
; n ¼ 1; 2:

For n ¼ 1; 2, let

uðnÞ ¼ uðnÞ1;2; . . . ; u
ðnÞ
1;2N�1; . . . ; u

ðnÞ
2N ;2; . . . ; u

ðnÞ
2N ;2N�1

h iT
and
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vðnÞ ¼ vðnÞ1;0; . . . ; v
ðnÞ
1;2Nþ1; . . . ; v

ðnÞ
2N ;0; . . . ; v

ðnÞ
2N ;2Nþ1

h iT
be such that

S11
uðnÞ

vðnÞ

� �
þ S12

v
ðnÞ
0;�

v
ðnÞ
2Nþ1;�

" #
¼ 0: ð4:10Þ

Then (4.9) becomes

ðI2

 
� BT

r BrÞS21 uð1Þ

vð1Þ

� �
;

v
ð2Þ
0;�

v
ð2Þ
2Nþ1;�

" #!
R4N�4

¼ ðI2

 
� BT

r BrÞS21 uð2Þ

vð2Þ

� �
;

v
ð1Þ
0;�

v
ð1Þ
2Nþ1;�

" #!
R4N�4

;

which, by (4.5) and Remark 4.1, is the same as

Bru
ð1Þ
2N ;�;Brv

ð2Þ
2Nþ1;�

� �
R2N

� Bru
ð1Þ
1;�;Brv

ð2Þ
0;�

� �
R2N

¼ Bru
ð2Þ
2N ;�;Brv

ð1Þ
2Nþ1;�

� �
R2N

� Bru
ð2Þ
1;�;Brv

ð1Þ
0;�

� �
R2N

; ð4:11Þ

where for n ¼ 1; 2,

u
ðnÞ
1;� ¼ uðnÞ1;2; . . . ; u

ðnÞ
1;2N�1

h iT
; u

ðnÞ
2N ;� ¼ uðnÞ2N ;2; . . . ; u

ðnÞ
2N ;2N�1

h iT
:

It follows from (4.3) and (4.4) that (4.10) is the matrix–vector form of the OSC problem

�DU ðnÞðni; njÞ þ V ðnÞðni; njÞ ¼ 0; �DV ðnÞðni; njÞ ¼ 0; i; j ¼ 1; . . . ; 2N ; ð4:12Þ

where U ðnÞ and V ðnÞ are given by (3.5) and (3.6), respectively, with uk;l replaced by uðnÞk;l and vk;l replaced by

vðnÞk;l . Since U ðnÞ 2 M0
h �M00

h and V ðnÞ 2 Mh �Mh, using (4.12) and Lemma 2.1, we have

h
2

X2N
i;j¼1

ðV ð1ÞV ð2ÞÞðni; njÞ ¼
h
2

X2N
i;j¼1

ðDU ð1ÞV ð2ÞÞðni; njÞ ¼
X2N
j¼1

ðU ð1Þ
x V ð2ÞÞð�; njÞj10:

Likewise,

h
2

X2N
i;j¼1

ðV ð1ÞV ð2ÞÞðni; njÞ ¼
h
2

X2N
i;j¼1

ðV ð1ÞDU ð2ÞÞðni; njÞ ¼
X2N
j¼1

ðU ð2Þ
x V ð1ÞÞð�; njÞj10;

and hence

h
X2N
j¼1

ðU ð1Þ
x V ð2ÞÞð�; njÞj10 ¼ h

X2N
j¼1

ðU ð2Þ
x V ð1ÞÞð�; njÞj10: ð4:13Þ

Using representations of U ðnÞ and V ðnÞ (cf. (3.5) and (3.6)), (2.2), (2.1), and (2.6), it is easy to verify that

(4.13) is the same as (4.11). This proves symmetry of ŜS.
Finally we show that ŜS is positive definite. Using the first part of the proof with v

ð2Þ
0;� ¼ v

ð1Þ
0;� and

v
ð2Þ
2Nþ1;� ¼ v

ð1Þ
2Nþ1;�, we have

ŜS
v
ð1Þ
0;�

v
ð1Þ
2Nþ1;�

" #
;

v
ð1Þ
0;�

v
ð1Þ
2Nþ1;�

" # !
R4N�4

¼ Bru
ð1Þ
2N ;�;Brv

ð1Þ
2Nþ1;�

� �
R2N

� Bru
ð1Þ
1;�;Brv

ð1Þ
0;�

� �
R2N

¼ h
X2N
j¼1

ðU ð1Þ
x V ð1ÞÞð�; njÞj10 ¼

h2

2

X2N
i;j¼1

ðV ð1ÞV ð1ÞÞðni; njÞ;
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which shows that ŜS is nonnegative definite. Since ŜS is also symmetric and nonsingular, this implies that ŜS is

positive definite. �

Based on Theorem 4.1, (4.6), and (4.1), we arrive at the following algorithm for solving (3.11)–(3.13).

Algorithm I

Step 1. Compute r ¼ �S21S�1
11

0

f

� �
:

Step 2. Compute r̂r ¼ ðI2 � BT
r BrÞr and solve ŜS

v0;�

2Nþ1;�

� �
¼ r̂r for v0;� and v2Nþ1;�.

Step 3. Compute u and v given by
u

v

� �
¼ S�1

11

0

f

� �
� S�1

11 S12
v0;�

v2Nþ1;�

� �
:

In Sections 4.2 and 4.3, we explain how to solve linear systems with matrices S11 and ŜS, and in Section 4.4

we describe a final implementation of Algorithm I and give its cost.

4.2. Solving a linear system with matrix S11

In addition to vectors u, v, and f of the forms (3.7), (3.9), and (3.14), respectively, we introduce

g ¼ ½g1;1; . . . ; g1;2N ; . . . ; g2N ;1; . . . ; g2N ;2N �T: ð4:14Þ
Then it follows from (4.3) that

S11
u

v

� �
¼ g

f

� �
ð4:15Þ

can be rewritten as

ðA� Br þ B� ArÞuþ ðB� BeÞv ¼ g; ðA� Be þ B� AeÞv ¼ f: ð4:16Þ
For future reference, in place of (4.16), we consider

ðA� Bþ B� AÞue þ ðB� BeÞv ¼ g;

ðA� Be þ B� AeÞv ¼ f;

� u�;1 ¼ a; u�;2N ¼ b;

ð4:17Þ

where

ue ¼ ½u1;1; . . . ; u1;2N ; . . . ; u2N ;1; . . . ; u2N ;2N �T; ð4:18Þ
u�;1 ¼ ½u1;1; . . . ; u2N ;1�T; u�;2N ¼ ½u1;2N ; . . . ; u2N ;2N �T; ð4:19Þ
and

a ¼ ½a1; . . . ; a2N �T; b ¼ ½b1; . . . ; b2N �T: ð4:20Þ
The vector ue in (4.18) is obtained by appending the components of u�;1 and u�;2N in (4.19) to u of (3.7).

Hence, (4.17) arises from (4.16) by replacing u, Ar, and Br with ue, A, and B, respectively, and by including
two additional equations for u�;1 and u�;2N .

Clearly, nonsingularity of S11 implies that of the matrix in the linear system (4.17).

Remark 4.2. The linear system (4.15) is a special case of (4.17) with a ¼ b ¼ 0.

In the remainder of this section, we discuss a matrix decomposition algorithm, based on (2.12), for
solving (4.17).
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It follows from the second equation in (2.12) that W TBT is nonsingular and that W �1 ¼ W TBTB. Hence

(4.17) is equivalent to

ðW TBT � I2NÞðA� Bþ B� AÞðW � I2N Þu0e þ ðW TBT � I2N ÞðB� BeÞðW � I2Nþ2Þv0 ¼ g0;

ðW TBT � I2NÞðA� Be þ B� AeÞðW � I2Nþ2Þv0 ¼ f 0;

� u0�;1 ¼ a0; u0�;2N ¼ b0;

ð4:21Þ

where u0e, v
0, u0�;1, and u0�;2N are such that

ue ¼ ðW � I2N Þu0e; v ¼ ðW � I2Nþ2Þv0; u�;1 ¼ W u0�;1; u�;2N ¼ W u0�;2N ; ð4:22Þ

and

g0 ¼ ðW TBT � I2N Þg; f 0 ¼ ðW TBT � I2N Þf; a0 ¼ W TBTBa; b0 ¼ W TBTBb: ð4:23Þ
The vectors u0e, v

0, u0�;1, u
0
�;2N , g

0, f 0, and a0, b0 have the same forms as ue of (4.18), v of (3.9), u�;1, u�;2N of (4.19),

g of (4.14), f of (3.14), and a, b of (4.20), respectively. In what follows, we denote the components of the

primed vectors by the corresponding primed letters, for example,

u0e ¼ ½u01;1; . . . ; u01;2N ; . . . ; u02N ;1; . . . ; u
0
2N ;2N �

T
: ð4:24Þ

Using (4.21) and (2.12), we have

ðK� Bþ I2N � AÞu0e þ ðI2N � BeÞv0 ¼ g0;

ðK� Be þ I2N � AeÞv0 ¼ f 0;

u0�;1 ¼ �a0; u0�;2N ¼ b0:

ð4:25Þ

For k ¼ 1; . . . ; 2N , we introduce

u0k;� ¼ ½u0k;1; . . . ; u0k;2N �
T
; v0k;� ¼ ½v0k;0; . . . ; v0k;2Nþ1�

T
; ð4:26Þ

and

g0k;� ¼ ½g0k;1; . . . ; g0k;2N �
T
; f 0k;� ¼ ½f 0

k;1; . . . ; f
0
k;2N �

T
: ð4:27Þ

With the use of (2.11), (4.25) becomes

ðAþ kkBÞu0k;� þ Bev
0
k;� ¼ g0k;�; ðAe þ kkBeÞv0k;� ¼ f 0k;�; u0k;1 ¼ �a0k; u0k;2N ¼ b0k; ð4:28Þ

where k ¼ 1; . . . ; 2N . Since kk > 0 (see (2.11)), the unique solvability of (4.28) is guaranteed by [13, Theorem

2.1]. By Remark 2.1, (4.28) can be rewritten in the form

RðkÞ
11

u0k;�
v00k;�

" #
þ RðkÞ

12

v0k;0
v0k;2Nþ1

" #
¼

g0k;�
f 0k;�

" #
; ð4:29Þ
R21

u0k;�
v00k;�

" #
¼ �a0k

b0k

� �
; ð4:30Þ

where v00k;� ¼ ½v0k;1; . . . ; v0k;2N �
T
,

RðkÞ
11 ¼ Aþ kkB B

O Aþ kkB

� �
; RðkÞ

12 ¼ Bt

At þ kkBt

� �
; R21 ¼

10 . . . 000 . . . 0
00 . . . 010 . . . 0

� �
; ð4:31Þ
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and where the 1 in the second row of R21 appears in the column 2N . Nonsingularity of Aþ kkB (cf. (2.16))

implies that of RðkÞ
11 . Solving (4.29) for

u0k;�
v00k;�

� �
and substituting it into (4.30), we obtain

v0k;0
v0k;2Nþ1

" #
¼ ½RðkÞ��1 a0k

�b0k

� �
þ ~RRðkÞ g0k;�

f 0k;�

" #
; ð4:32Þ

where the 2� 2 matrix

RðkÞ ¼ R21½RðkÞ
11 �

�1RðkÞ
12 ; ð4:33Þ

and the 2� 4N matrix

~RRðkÞ ¼ ½RðkÞ��1R21½RðkÞ
11 �

�1 ¼
q
ðkÞ
1

h iT
q
ðkÞ
2

h iT
q
ðkÞ
3

h iT
q
ðkÞ
4

h iT
2
64

3
75; ð4:34Þ

where q
ðkÞ
i 2 R2N , i ¼ 1; 2; 3; 4. For each k ¼ 1; . . . ; 2N , the 2� 4N matrix R21½RðkÞ

11 �
�1

is precomputed at a

cost OðNÞ using COLROW [7,8] for solving ABD systems. Then RðkÞ of (4.33) and ~RRðkÞ of (4.34) are pre-

computed at costs Oð1Þ and OðNÞ, respectively. To solve (4.28), we first compute v0k;0, v
0
k;2Nþ1 at a cost OðNÞ

using (4.32), and then use COLROW to solve (4.29) for u0k;�, v
00
k;� at a cost OðNÞ.

We arrive at the following algorithm for solving (4.17).

Algorithm II

Step 1. Compute g0, f 0, a0, and b0 using (4.23).
Step 2. For k ¼ 1; . . . ; 2N , solve (4.28) for u0k;� and v0k;� using (4.32) and (4.29).

Step 3. Compute ue and v using (4.22).

Using Remarks 2.2 and 2.3 we obtain the following remark.

Remark 4.3. In Step 1 of Algorithm II, the cost of computing g0, f 0 is 10N 2 log2 N each, and the cost of

computing a0, b0 is OðN log2 NÞ each. The cost of Step 2 to compute the solutions u0k;�, v
0
k;�, k ¼ 1; . . . ; 2N ; of

(4.28) is OðN 2Þ. In Step 3, the cost of computing ue and v is 10N 2 log2 N each.

4.3. Solving a linear system with matrix ŜS

It follows from Theorem 4.1 that the PCG method can be used to perform the second part of Step 2 of
Algorithm I. Therefore, in this section, we discuss multiplication of a vector by ŜS, selection of a precon-

ditioner for ŜS, and the solution of a linear system with the preconditioner.

Let v0;� and v2Nþ1;� be arbitrary vectors of the forms (3.10). Then (4.8), (4.7), and Remark 4.1 imply that

in order to compute ŜS
v0;�
v2N ;�

� �
, we have to determine

g

f

� �
¼ S12

v0;�
v2Nþ1;�

� �
; ð4:35Þ

solve (4.15) for u1;�, u2N ;�, and finally calculate BT
r Bru1;�, BT

r Bru2N ;�. It follows from Remark 4.2, (4.35), (4.4),

(4.23), (2.9), (4.27), (2.10), and (2.13)–(2.15) that for l ¼ 1; . . . ;N ,

g02l;� ¼ d2lBrðv0;� � v2Nþ1;�Þ; g02l�1;� ¼ d2l�1Brðv0;� þ v2Nþ1;�Þ; ð4:36Þ
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f 02l;� ¼ ðc2lBr þ d2lArÞðv0;� � v2Nþ1;�Þ; f 02l�1;� ¼ ðc2l�1Br þ d2l�1ArÞðv0;� þ v2Nþ1;�Þ; ð4:37Þ

where

dk ¼
X3
i¼1

biwi;k; ck ¼
X3
i¼1

aiwi;k; k ¼ 1; . . . ; 2N :

Using (4.29) and (4.31), we obtain for k ¼ 1; . . . ; 2N ;

u0k;� ¼ ðAþ kkBÞ�1½g0k;� � BðAþ kkBÞ�1
f 0k;�� þ v0k;0p

ðkÞ
1 þ v0k;2Nþ1p

ðkÞ
2 ; ð4:38Þ

where p
ðkÞ
1 ; p

ðkÞ
2 2 R2N are such that

p
ðkÞ
1 ; p

ðkÞ
2

� �
¼ ðAþ kkBÞ�1½BðAþ kkBÞ�1ðAt þ kkBtÞ � Bt�: ð4:39Þ

Since a0 ¼ b0 ¼ 0 by (4.23), (4.32), (4.34), (4.36), and (4.37) imply that for l ¼ 1; . . . ;N ,

v02l;0 ¼ ðzð2lÞ1 ; v0;� � v2Nþ1;�ÞR2N�2 ; v02l;2Nþ1 ¼ ðzð2lÞ2 ; v0;� � v2Nþ1;�ÞR2N�2 ;

v02l�1;0 ¼ ðzð2l�1Þ
1 ; v0;� þ v2Nþ1;�ÞR2N�2 ; v02l�1;2Nþ1 ¼ ðzð2l�1Þ

2 ; v0;� þ v2Nþ1;�ÞR2N�2 ;
ð4:40Þ

where

z
ðkÞ
1 ¼ BT

r dkq
ðkÞ
1

h
þ ckq

ðkÞ
2

i
þ dkAT

r q
ðkÞ
2 ; z

ðkÞ
2 ¼ BT

r dkq
ðkÞ
3

h
þ ckq

ðkÞ
4

i
þ dkAT

r q
ðkÞ
4 : ð4:41Þ

It follows from (3.8), (4.18), (4.22), (4.24), (4.26), (4.28) with a0k ¼ b0k ¼ 0, and (2.15) that

0

u1;�
0

2
4

3
5 ¼

XN
l¼1

w1;2lu
0
2l;� þ

XN
l¼1

w1;2l�1u
0
2l�1;�; ð4:42Þ
0

u2N ;�
0

2
4

3
5 ¼

XN
l¼1

w1;2lu
0
2l;� �

XN
l¼1

w1;2l�1u
0
2l�1;�: ð4:43Þ

Using (4.38), (4.36), (4.37), (2.16), and (2.12), we obtain

XN
l¼1

w1;2lu
0
2l;� ¼ WD1W TBTBrðv0;� � v2Nþ1;�Þ � WD2W TBTArðv0;� � v2Nþ1;�Þ

þ
XN
l¼1

w1;2lv02l;0p
ð2lÞ
1

h
þ w1;2lv02l;2Nþ1p

ð2lÞ
2

i
; ð4:44Þ
XN
l¼1

w1;2l�1u
0
2l�1;� ¼ WD3W TBTBrðv0;� þ v2Nþ1;�Þ � WD4W TBTArðv0;� þ v2Nþ1;�Þ

þ
XN
l¼1

w1;2l�1v02l�1;0p
ð2l�1Þ
1

h
þ w1;2l�1v02l�1;2Nþ1p

ð2l�1Þ
2

i
; ð4:45Þ

where
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D1 ¼
XN
l¼1

w1;2lK
�1
2l d2lI2N
�

� c2lK
�1
2l

�
; D2 ¼

XN
l¼1

w1;2ld2lK
�2
2l ;

D3 ¼
XN
l¼1

w1;2l�1K
�1
2l�1 d2l�1I2N
�

� c2l�1K
�1
2l�1

�
; D4 ¼

XN
l¼1

w1;2l�1d2l�1K
�2
2l�1;

ð4:46Þ

and Kk ¼ Kþ kkI2N . For each k ¼ 1; . . . ; 2N , the vectors p
ðkÞ
1 , p

ðkÞ
2 of (4.39) are precomputed at a cost OðNÞ

using COLROW [7,8]. By Remark 2.2, the vectors z
ðkÞ
1 , z

ðkÞ
2 of (4.41) are precomputed at a cost OðNÞ using

precomputed ~RRðkÞ of (4.34). The diagonal matrices D1, D2, D3, D4 of (4.46) are precomputed at a cost OðNÞ.
Hence v02l;0, v

0
2l�1;0, v

0
2l;2Nþ1, v

0
2l�1;2Nþ1 of (4.40) are computed at a cost 16N 2. It follows from Remarks 2.2 and

2.3 that the sums (4.44) and (4.45) are computed at a cost 16N 2. Thus (4.42) and (4.43) imply that u1;� and

u2N ;� are computed at a cost 32N 2. Using again Remark 2.2, we obtain the following remark.

Remark 4.4. The cost of multiplying a vector by ŜS by is 32N 2.

The remainder of this section is concerned with the selection of a preconditioner ~PP for ŜS and the solution

of a linear system with ~PP . First we split vector v of (3.9) into three parts,

vr ¼ ½v1;1; . . . ; v1;2N ; . . . ; v2N ;1; . . . ; v2N ;2N �T;

and

v�;0 ¼ ½v1;0; . . . ; v2N ;0�T; v�;2Nþ1 ¼ ½v1;2Nþ1; . . . ; v2N ;2Nþ1�T:

(The vector vr is obtained by deleting from v the components of v�;0 and v�;2Nþ1.) Then (4.17), with

g ¼ f ¼ 0, a ¼ B�1B�Tc, and b ¼ B�1B�Td can be written in the compact form

P11
ue

vr

� �
þ P12

v�;0

v�;2Nþ1

� �
¼ 0;

P21
ue

vr

� �
¼ B�1B�Tc

B�1B�Td

� �
;

ð4:47Þ

where

P11 ¼
A� Bþ B� A B� B

O A� Bþ B� A

� �
; ð4:48Þ

and P12, P21 are the corresponding blocks in (4.17).
The matrix P11 of (4.48) is nonsingular since, with ue of the form (4.18), the equation

ðA� Bþ B� BÞue ¼ 0 is the matrix–vector form of the following OSC problem: find U 2 M0
h �M0

h such

that

�DUðni; njÞ ¼ 0; i; j ¼ 1; . . . ; 2N :

It is well known (see, for example, [16, Proposition 3.1]) that the only solution to this problem is U ¼ 0

which gives ue ¼ 0.

Using nonsingularity of P11, we eliminate
ue
vr

� �
from (4.47) to obtain

P̂P
v�;0

v�;2Nþ1

� �
¼ c

d

� �
; ð4:49Þ

where P̂P ¼ ðI2 � BTBÞP and the 4N � 4N Schur complement matrix P ¼ �P21P�1
11 P12.
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Theorem 4.2. The matrix P̂P is symmetric and positive definite.

Proof. The proof of this theorem is similar to that of Theorem 4.1. First we show that P̂P is nonsingular.

Then we prove that P̂P ¼ P̂PT and that P̂P is nonnegative definite. This and nonsingularity of P̂P imply that P̂P is

positive definite. �

Since (4.47) is the same as (4.17) with g ¼ f ¼ 0, a ¼ B�1B�Tc, b ¼ B�1B�Td, and since (4.49) was ob-

tained from (4.47), we have the following remark.

Remark 4.5. For arbitrary c and d, the solution of (4.49) is obtained by solving (4.17), with g ¼ f ¼ 0,

a ¼ B�1B�Tc, and b ¼ B�1B�Td, for the components fvk;0g2Nk¼1 and fvk;2Nþ1g2Nk¼1 of v.

Since the orders of ŜS of (4.8) and P̂P are not the same, as a preconditioner for ŜS we take the

ð4N � 4Þ � ð4N � 4Þ matrix ~PP which arises on the left-hand side of (4.49) from the elimination of v1;0, v2N ;0,

v1;2Nþ1, v2N ;2Nþ1 using the submatrix of P̂P formed by the entries of P̂P located in rows and columns 1, 2N ,

2N þ 1, 4N . Clearly, ~PP is symmetric and positive definite since it is the Schur complement of a symmetric

and positive definite submatrix in the symmetric and positive definite P̂P . Moreover, for arbitrary fckg2N�1

k¼2

and fdkg2N�1
k¼2 , the solution of

~PP ½v2;0; . . . ; v2N�1;0; v2;2Nþ1; . . . ; v2N�1;2Nþ1�T ¼ ½c2; . . . ; c2N�1; d2; . . . ; d2N�1�T ð4:50Þ

is obtained by solving (4.49), with c ¼ ½0; c2; . . . ; c2N�1; 0�T, d ¼ ½0; d2; . . . ; d2N�1; 0�T, for fvk;0g2N�1
k¼2 and

fvk;2Nþ1g2N�1
k¼2 . By Remark 4.5, we find the solution of (4.50) by solving (4.17), with g ¼ f ¼ 0, a ¼ B�1B�Tc,

and b ¼ B�1B�Td, for the components fvk;0g2N�1
k¼2 and fvk;2Nþ1g2N�1

k¼2 of v. By Remark 2.3, the cost of Step 1 of

Algorithm II, which involves computing a0 and b0 only, is OðN log2 NÞ. The cost of Step 2 to compute v0k;0,
v0k;2Nþ1, k ¼ 1; . . . ; 2N ; using (4.32) with g0k;� ¼ f 0k;� ¼ 0 and the precomputed matrices RðkÞ of (4.33), is OðNÞ.
By Remark 2.3, the cost of Step 3, which involves two multiplications by W to obtain fvk;0g2Nk¼1 and

fvk;2Nþ1g2Nk¼1, is OðN log2 NÞ. Thus we arrive at the following remark.

Remark 4.6. The cost of solving a linear system with the preconditioner ~PP is OðN log2 NÞ.

With the preconditioner ~PP , the convergence rate of the PCG method applied to a linear system with ŜS
depends on

j2ð ~PP�1=2ŜS ~PP�1=2Þ ¼ kmaxð ~PP�1ŜSÞ=kminð ~PP�1ŜSÞ:

The right-hand side in this formula was used to compute j2ð ~PP�1=2ŜS ~PP�1=2Þ numerically for several values of

N . Based on the results presented in Table 1, we conjecture that j2ð ~PP�1=2ŜS ~PP�1=2Þ is bounded from above by a

small positive constant which is independent of N . In comparison, j2ðŜSÞ is large and depends linearly on N .
Table 1

j2ð ~PP�1=2ŜS ~PP�1=2Þ and j2ðŜSÞ

N j2ð ~PP�1=2ŜS ~PP�1=2Þ j2ðŜSÞ

4 2.69 0.986+ 03

8 3.08 0.277+ 04

16 3.32 0.598+ 04

32 3.46 0.122+ 05

64 3.55 0.245+ 05

128 3.61 0.490+ 05



616 B. Bialecki / Journal of Computational Physics 191 (2003) 601–621
4.4. Final implementation and cost of Algorithm I

In this section we discuss the final implementation and give the cost of Algorithm I of Section 4.1 for

solving (3.11)–(3.13).

Step 1 of Algorithm I involves computing S21
p

q

� �
, where S11

p

q

� �
¼ 0

f

� �
. Remark 4.1 implies that only

subvectors p1;� and p2N ;� of p are needed when solving the linear system with S11. It follows from Remark 4.2

and the first part of Remark 4.3 that the cost of computing f 0 ¼ ðW TBT � I2N Þf is 10N 2 log2 N (g0 ¼ 0 and

a0 ¼ b0 ¼ 0 by (4.23)). Next, by the second part of Remark 4.3, we compute at a cost OðN 2Þ, and save, the

solutions p0k;�, q
0
k;�, k ¼ 1; . . . ; 2N , of (4.28) with g0k;� ¼ 0 and a0k ¼ b0k ¼ 0. Then p1;� and p2N ;� are computed at

a cost OðN 2Þ using (4.42) and (4.43) with u0k;� replaced by p0k;�. Thus the cost of Step 1 is 10N 2 log2 N .
By Remark 2.2 the cost of the first part of Step 2 is OðNÞ. The second part of Step 2 is carried out using

the PCG method with ~PP as a preconditioner for ŜS. It follows from Remarks 4.4 and 4.6 that the cost of each

PCG iteration is 32N 2. Hence, with the number of PCG iterations equal to m, the cost of Step 2 is 32mN 2.

To carry out Step 3, we first examine
w

z

� �
¼ S�1

11

g

f

� �
, where

g

f

� �
is given by (4.35). It follows from

(4.36), (4.37), and Remark 2.2 that the subvectors g0k;�, f 0k;�, k ¼ 1; . . . ; 2N , of g0 ¼ ðW TBT � I2N Þg,
f 0 ¼ ðW TBT � I2N Þf are computed at a cost OðN 2Þ. Then, by the second part of Remark 4.3, the solutions

w0
k;�, z

0
k;�, k ¼ 1; . . . ; 2N , of (4.28), with a0k ¼ b0k ¼ 0, are computed at a cost OðN 2Þ. Finally, to obtain u of

u

v

� �
¼ S�1

11

0

f

� �
� S�1

11

g

f

� �
;

we first compute u0k;� ¼ p0k;� � w0
k;�, k ¼ 1; . . . ; 2N , at a cost OðN 2Þ, and then, by the third part of Remark 4.3,

we compute ue ¼ ðW � I2N Þu0 (and hence its restriction u) at a cost 10N 2 log2 N . If v is also required, then
v0k;� ¼ q0k;� � z0k;�, k ¼ 1; . . . ; 2N , and v ¼ ðW � I2Nþ2Þv0 are computed at costs OðN 2Þ and 10N 2 log2 N ,

respectively.

It follows from the above discussion that the cost of solving (3.11)–(3.13) for u is

20N 2 log2 N þ 32mN 2; ð4:51Þ

where m is the number of PCG iterations.
5. Numerical results

We used the method of this paper to solve several test problems corresponding to (1.1). The algorithm

was run in double precision on a Gateway PC E-2000 400. For an N � N uniform partition of X, the initial
guess for the PCG method was 0 and the number m of PCG iterations was set to log2 N þ 2. By (4.51), the
cost of computing the 4N 2 coefficients in the OSC approximation to u was 52N 2 log2 N .

Convergence rates in the maximum norm kwkC ¼ max06 n;m6 200 jwðtn; tmÞj and the nodal norm

kwkCh
¼ max06 n;m6N jwðtn; tmÞj were determined using the formula

rate ¼ logðeN=2=eNÞ
log 2

;

where eN is the error corresponding to the N � N partition.

Example 1. In this artificial example, which is the same as Test Problem 2 in [1], we take X ¼ ð0; 1Þ � ð0; 1Þ
and f , g1 ¼ g2 � 0 corresponding to the smooth exact solution
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uðx; yÞ ¼ ½1� cosð2pxÞ�½1� cosð2pyÞ�:

(This example is similar to that in [4,11], where uðx; yÞ ¼ sin2ð2pxÞ sin2ð2pyÞ.) In [1], the corresponding finite
difference linear system was solved using the full multigrid method and the iterative multigrid method in

which W cycling was continued until the maximum correction by a single cycle was less than 10�11. For the

same values of N ¼ 16; 32; 64; 128 as in [1], the values of our term log2 N are smaller than the number of W
cycles in [1, Table 2]. In [1], the cost of eachW cycle is cN 2, where the constant c, not given in [1], is expected

to be larger than our constant of 52. Therefore, on this test problem, our algorithm is competitive with the

iterative W -cycle multigrid method of [1]. In Tables 2 and 3, we give errors and the corresponding con-

vergence rates for u and v using the maximum and nodal norms. The convergence rates of order four for the

approximations to the first order derivatives of u and v at the partition nodes demonstrate superconver-
gence phenomenon of OSC. The errors ku� UkCh

in Table 2 are comparable to those in column 4 of Table 2

in [1]. In comparison to [1], our method also produces approximations to v ¼ Du, vx, and vy . More im-

portantly, our approximations to u, v and their first order derivatives are continuous piecewise polynomials

defined over X.

Example 2. In this example, corresponding to bending of a square clamped plate under a uniform load [18],

we take X ¼ ð0; 1Þ � ð0; 1Þ, f � 1, and g1 ¼ g2 � 0. Although the exact solution u is not known in closed

form, it follows from [2, Remark 2.1] that u is, at least, in H 4:7ðXÞ. In Table 4, we present computed values
Table 2

Maximum and nodal errors, and convergence rates for u

N ku� UkC ku� UkCh
kðu� UÞxkCh

kðu� UÞykCh

Error Rate Error Rate Error Rate Error Rate

16 0.164) 03 0.785) 04 0.415) 04 0.415) 04

32 0.105) 04 3.965 0.486) 05 4.015 0.248) 05 4.063 0.248) 05 4.063

64 0.605) 06 4.118 0.303) 06 4.004 0.153) 06 4.016 0.153) 06 4.016

128 0.397) 07 3.930 0.189) 07 4.001 0.955) 08 4.004 0.955) 08 4.004

Table 3

Maximum and nodal errors, and convergence rates for v

N kv� V kC kv� V kCh
kðv� V ÞxkCh

kðv� V ÞykCh

Error Rate Error Rate Error Rate Error Rate

16 0.929) 02 0.509) 02 0.122) 01 0.122) 01

32 0.593) 03 3.970 0.317) 03 4.004 0.768) 03 3.990 0.768) 03 3.990

64 0.341) 04 4.121 0.198) 04 4.001 0.480) 04 3.999 0.480) 04 3.999

128 0.224) 05 3.930 0.124) 05 4.000 0.302) 05 3.990 0.300) 05 4.000

Table 4

Computed deflection and bending moments

N uð0:5; 0:5Þ Mxð1; 0:5Þ Myð0:5; 1Þ

4 0.00125862025 )0.0513059279 )0.0515000295
8 0.00126485585 )0.0513338674 )0.0513348569
16 0.00126528707 )0.0513335820 )0.0513335820
32 0.00126531700 )0.0513337482 )0.0513337482
64 0.00126531896 )0.0513337636 )0.0513337636
128 0.00126531908 )0.0513337647 )0.0513337647
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of the deflection uð0:5; 0:5Þ and the bending moments Mxð1; 0:5Þ, Myð0:5; 1Þ, where Mx ¼ �Du and

My ¼ �Du on the vertical and horizontal sides of oX, respectively. In comparison, the corresponding values

reported in [18, Table 35] are uð0:5; 0:5Þ ¼ 0:00126, Mxð1; 0:5Þ ¼ �0:0513, and Myð0:5; 1Þ ¼ �0:0513. These
values were obtained in [18] by a Fourier series method and by replacing an infinite number of the resulting

linear equations with four equations. With N ¼ 4, we obtain three correct significant digits in our ap-

proximation to uð0:5; 0:5Þ.
The same problem was solved in [11] using the mixed approach and the spectral collocation discreti-

zation with the Chebyshev polynomials of degree 6N . The resulting linear system was solved by the
Richardson method with a finite difference preconditioner. The errors reported in [11, Table VII] are

comparable to our errors for N ¼ 8 and are smaller for N ¼ 16; 32 by the factor of 0:5� 10�1. It is noted in

[11] that the spectral method does not converge exponentially due to the singularities at the corners.

Example 3. To show the applicability of our approach to the solution of other plate bending problems, in

this example, we solve the problem

D2u ¼ 1 in X ¼ ð0; 1Þ � ð0; 1Þ; u ¼ 0 on oX; uyðx; 1Þ ¼ 0; 0 < x < 1;
Duð0; yÞ ¼ Duð1; yÞ ¼ 0; 0 < y < 1; Duðx; 0Þ ¼ 0; 0 < x < 1:

This problem models bending of a square plate under a uniform load with one side clamped and the three

remaining sides simply supported [18]. The exact solution u 62 C4ðXÞ since otherwise the boundary condi-

tions and the differential equation would imply D2uð0; 1Þ ¼ 0 and D2uð0; 1Þ ¼ 1, respectively. Finding the

OSC solution for this problem involves solving linear system (4.17) with g ¼ 0, b ¼ 0, and the condition

�u�;1 ¼ a replaced by v�;0 ¼ 0. Such a system can be solved directly and the cost of computing 4N 2 un-

knowns corresponding to the OSC approximation of u is 20N 2 log2 N . In Table 5 we present computed

values of the deflection uð0:5; 0:5Þ and the bending moment Myð0:5; 1Þ, where My ¼ �Du on the horizontal

sides of oX. In comparison, the corresponding values reported in [18, Table 32] are uð0:5; 0:5Þ ¼ 0:0028 and
Myð0:5; 1Þ ¼ �0:084.

Example 4. In this example, corresponding to bending of a square clamped plate under the load 1 con-
centrated at the center [18], we take X ¼ ð0; 1Þ � ð0; 1Þ, g1 ¼ g2 � 0, and

f ðx; yÞ ¼ 1=ð4h2Þ if jx� 1=2j6 h and jy � 1=2j6 h;
0 otherwise:

�
ð5:1Þ

In Table 6, we present computed values of the deflection uð0:5; 0:5Þ and the bending moment Myð0:5; 1Þ,
where My ¼ �Du on the horizontal sides of oX. In comparison, the corresponding values reported in [18,

Table 37] are uð0:5; 0:5Þ ¼ 0:00560 and Myð0:5; 1Þ ¼ �0:1257. We obtain better approximations for the

larger values of N since then f ðx; yÞ of (5.1) better models the load 1 concentrated at the center.
Table 5

Computed deflection and bending moment

N uð0:5; 0:5Þ Myð0:5; 1Þ

4 0.00278243314 )0.0838262426
8 0.00278527850 )0.0838704717
16 0.00278548018 )0.0838748929
32 0.00278549313 )0.0838751788
64 0.00278549394 )0.0838751968
128 0.00278549399 )0.0838751979



Table 6

Computed deflection and bending moment

N uð0:5; 0:5Þ Myð0:5; 1Þ

4 0.00338671561 )0.105221752
8 0.00476831786 )0.120689230
16 0.00532930384 )0.124502492
32 0.00552339288 )0.125453479
64 0.00558537771 )0.125691269
128 0.00560424025 )0.125750723
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Example 5. In this example, corresponding to the problem (1)–(2) of [15] with Dw replaced by u,
p ¼ p0 � 1, a ¼ 2, b ¼ 1, we take X ¼ ð�2; 2Þ � ð�1; 1Þ, f � 1, and g1 ¼ g2 � 0. For N ¼ 128, our plots in

Figs. 1 and 2 reproduce very well the corresponding graphs of vx and vy (v ¼ Du) in Figures of 4 and 5 of

[15].

Example 6. In this example, corresponding to creeping flow of a viscous incompressible fluid in a square

cavity [12], we take X ¼ ð0; 1Þ � ð0; 1Þ, f � 0, g1 � 0, g2 ¼ 1 on the upper side of oX, and g2 ¼ 0 on the

remaining sides of oX. The boundary conditions imply that uy is discontinuous at the vertices ð0; 1Þ and

ð1; 1Þ and it is well-known (see, e.g., [12]) that the vorticity v ¼ Du is unbounded near the points ð0; 1Þ and
Fig. 1. Vxð2; yÞ for y in ½�1; 1� and ½0:9; 1�.

Fig. 2. Vyðx; 1Þ for x in ½�2; 2� and ½1:8; 2�.



Table 7

Primary vortex, stream function and vorticity

N Vortex u v

4 (0.5,0.7534) 0.0981098667 )3.09335605
8 (0.5,0.7651) 0.100019733 )3.21563572
16 (0.5,0.765) 0.100100124 )3.21252713
32 (0.5,0.765) 0.100081897 )3.21195846
64 (0.5,0.765) 0.100076897 )3.21191707
128 (0.5,0.765) 0.100076276 )3.21192238
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ð1; 1Þ. We approximate the nonzero boundary condition using the approach described in [13, Section 5.1].

Taking advantage of f � 0, we reduce the cost of our algorithm to 42N 2 log2 N when computing 4N 2 co-

efficients in the OSC approximation to u. The computed coordinates of the primary vortex center, the

computed values of the stream function u and vorticity v at the vortex are reported in Table 7. They are in

good agreement with the corresponding results of Kelmanson [12] who subtracted a singularity in his

integral equation method to obtain u ¼ 0:0998, v ¼ �3:2021 at the vortex ð0:5; 0:76Þ.
This problem was solved in [1] as Test Problem 3. Our coordinates of the vortex and our value of u at the

vortex are very close to the corresponding results reported in [1, Table 3], where the iterative multigrid
method with 14 W cycles was used for an N � N grid with N ¼ 16; 32; 64. Since the cost of each W cycle is

expected to be larger than 42N 2 and since our term log2 N is smaller than 14, it appears, that our algorithm

is more efficient than that of [1] for solving this test problem. Moreover, in comparison to [1], we also

obtain, if desired, an approximation to vorticity at the vortex.

The same problem was also solved in [20] using a spectral multigrid method. Although the reported

results ð0:5; 0:78Þ for the vortex, u ¼ 0:09975, and v ¼ �3:36 are in reasonable agreement with those of [12],

they are no more accurate than our results. This is expected since the solution u is not smooth.
6. Conclusions

In this paper we developed an efficient algorithm for solving the biharmonic Dirichlet problem on a

rectangle using a fourth order mixed method based on the piecewise Hermite bicubic OSC discretization.

The nearly optimal algorithm is faster than previously proposed algorithms for solving the same OSC linear

system. The algorithm is competitive with other fourth order finite difference and finite element Galerkin

algorithms and is particularly well suited for solving plate bending problems with different kinds of clamped
and simply supported boundary conditions.
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